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It is known that the classical boundary-layer solution breaks down through the 
appearance of the Goldstein singularity in a steady solution or Van Dommelen’s 
singularity in an unsteady solution. Interaction between the inviscid flow and the 
boundary layer removes the Goldstein singularity, until a new critical parameter is 
reached, corresponding to a marginal separation in the asymptotic triple-deck 
description. In earlier studies instabilities were encountered in interacting boundary- 
layer calculations of steady flow along an indented plate, which might be related to 
the breakdown of the marginal separation. The present study identifies them as 
numerical. Further, until now it was unknown whether the unsteady interacting 
boundary-layer approach would remove Van Dommelen’s singularity in the classical 
boundary layer around an impulsively started cylinder. It is shown here that its 
appearance is at least delayed. The calculations show the experimentally known 
individualization of a vortex, after which the solution grows without reaching a 
steady limit; a process that is likely to be related to dynamic stall. 

1. Introduction 
When one relies on the physics to select initial and boundary conditions, the 

Xavier-Stokes equations are expected to give a complete mathematical description 
of the flow. For large Reynolds numbers the Navier-Stokes solution can be 
approximated by an asymptotic description. Critical combinations of parameters 
(e.g. angle of incidence, geometry size, Reynolds number) can exist where a certain 
asymptotic description fails to represent the physics and breaks down. This 
mathematical breakdown can be characterized by a singularity, the non- 
existence/non-uniqueness of the steady solution, or the growth beyond all bounds 
at infinitely large time of the unsteady solution. In  the worst case the asymptotic 
solution may diverge from the Naviel-Stokes solution without a special warning. 
The breakdown indicates the need to introduce new asymptotic equations to continue 
the asymptotic description of the Navier-Stokes solution. The large effort required 
to calculate a high-Reynolds-number Navier-Stokes solution, owing to the existence 
of different time- and lengthscales, motivates the search for these new asymptotic 
structures. Another reason to continue studying asymptotic descriptions is its great 
physical relevance. A breakdown might be related to the transition to another 
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physical structure: the breaking away of the boundary layer from the wall, the 
formation of a vortex, or the dynamic stall process. 

The classical asymptotic description of Prandtl (1904) omits the viscous terms 
everywhere, yielding the Euler equations, except in a thin layer along the wall, where 
the (classical) boundary-layer equations hold. Goldstein ( 1948) proved that the 
steady classical boundary-layer solution, in which the pressure is prescribed, has a 
singularity at the point of zero wall shear stress, unless the pressure satisfies some 
special conditions. Van Dommelen (1981) calculated the appearance of a singularity, 
not of the Goldstein type, in the unsteady classical boundary-layer solution within 
a finite time after the impulsive start of a cylinder. Sychev (1972) and Smith (1977, 
1979) removed the Goldstein singularity in the steady solution by the introduction 
of the triple-deck equations in the neighbourhood of the point of zero wall shear 
stress; the pressure is no longer prescribed but results from interaction with the 
boundary layer. Sychev showed that the triple-deck description is consistent with 
the assumption that the Kirchhoff free-streamline solution is the relevant Euler 
solution for the cylinder (Brodetski 1923) ; triple-deck equations describe finite- 
Reynolds-number effects in the neighbourhood of the position where the free 
streamline leaves the wall (at 56”). This description, in which the boundary layer 
is continued as a free shear layer along the free streamline, agrees with Prandtl’s 
suggestion that a large-scale breaking away of the boundary layer, i.e. the 
‘separation’ of the boundary layer, is found in the steady flow when the wall shear 
stress vanishes. Stewartson, Smith & Kaups (1982) describe i t  as the transition from 
an ‘attached’ boundary layer (viscous effects are only felt in an O ( R f )  layer close 
to the wall) to a ‘detached’ boundary layer (viscous effects are also felt in layers 
further removed from the wall). Separation, attachment and detachment are defined 
here within the boundary-layer concept of asymptotically large Reynolds numbers, 
indicating that a free shear layer leaves the wall. Frequently, the same terms are also 
used within the real (Navier-Stokes) concept for finite Reynolds numbers, describing 
a streamline leaving the wall. This can easily lead to confusion. 

A singularity in the classical boundary layer does not necessarily imply its 
large-scale breaking away ; finite-Reynolds-number viscous-inviscid interaction can 
prevent it, admitting a small recirculation region (bubble) in the steady boundary 
layer, but leaving it still attached. Considering triple-deck equations, Stewartson 
et al. (1982) reserve the terms ‘marginal separation’ for this behaviour. Within this 
asymptotic framework, calculations of boundary layers with recirculation have 
already been performed. Dijkstra (1979) calculated a steady boundary layer, with 
bubble, along a wall with a smooth step, using triple-deck equations. In  the same 
way, the bubble along an indented plate was calculated (Veldman & Dijkstra 1980). 
Both geometries fit the triple-deck scalings; hence in the limit of infinite Reynolds 
number there is no bubble at all. Stewartson et al. (1982) used the same equations 
for a leading-edge bubble on a thin ellipse at an angle of incidence. From their 
calculations i t  follows that a critical combination of parameters (thickness ratio of 
the ellipse, angle of incidence and Reynolds number) exists, where non-existence or 
non-uniqueness of the solution occurs. Smith (1982) repeated the analysis with 
unsteady triple-deck equations for parameters where a steady triple-deck solution 
does not exist ; rapidly growing peaks in the displacement thickness are calculated, 
corresponding to the formation of many eddies, strongly indicating the appearance 
of a finite-time singularity. Smith suggested that this behaviour is related to the 
dynamic-stall process, in which a small increase of the angle of incidence totally 
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changes the streamline pattern, achieving the violently unsteady transition from an 
attached to a detached boundary layer. 

One might want to go one step further and calculate attached boundary layers with 
bubbles that do not fit into the asymptotic triple-deck scalings. Veldman (1979,1981) 
generalized the triple-deck idea to a composite formulation, valid in the whole 
boundary layer, in which all asymptotic layers, whatever they may be, are hidden. 
Its unsteady formulation, in boundary-layer scalings, for two-dimensional, is0- 
thermal, incompressible, laminar flows, is 

I au av 
ax ay -+- = 0, 

I au au au ap a Z u  

at ax ay ax ay2 

-+u-+v- = --+-, 

with the initial and boundary conditions 

t = 0:  u, w components specified, I y = o :  u = v = o ,  

Y +  00 : 4x9 y , l )+Ue(X,  t ) ,  

x = xb : u-profile (without backflow) of the oncoming boundary layer specified.] 

(2) 
The displacement thickness 6* is defined as 

The first part of the edge velocity, ue, o ,  results from the Euler solution, assuming 
an attached vanishingly thin boundary layer. The second part, with the Cauchy 
integral, accounts for the viscous-inviscid interaction; only a simple interaction 
model is used representing the displacement effect on the potential solution of a 
distribution of sources on the straight line between xb and x,. The composite 
formulation (1)  and (2) is referred to as the interacting boundary-layer equations. 
Its steady formulation was used by Carter & Wornom (1975), Veldman (1979, 1981) 
and Edwards & Carter (1985) to calculate the attached boundary layer, with bubble, 
along a plate with a small indentation. Convergence problems are revealed for very 
large Reynolds numbers, which could be related to non-existence or non-uniqueness 
of the solution, similar to the breakdown of the steady triple-deck solution according 
to Stewartson et al. 

In the present paper the interacting boundary-layer equations are considered. We 
investigate whether a breakdown occurs, and if so, how it is related to the breakdown 
in the classical theories (Goldstein and Van Dommelen) and in the triple-deck theory 
(Stewarteon et al. and Smith). Recently the interacting boundary-layer equations 
for a trailing-edge configuration were solved by Rothmayer & Davis (1985); the 
interacting boundary-layer solution in this case breaks down in a way similar to that 
of the triple-deck equations. Two new examples are given here. With an unsteady 
evolution, we investigate whether the convergence problems of the steady interacting 



516 R. A .  W .  M .  Henkes and A .  E .  P .  Veldman 

boundary-layer solution along the indented plate are related to a breakdown 
(finite-time singularity or unboundedness fort -+ 00 of the unsteady solution, implying 
the non-existence of the steady solution) or whether they have only a numerical cause. 
As a second example we consider a problem where the recirculation region is larger : 
we investigate the influence of interaction on Van Dommelen’s finite-time singularity 
in the unsteady classical boundary-layer solution for the impulsively started cylinder. 

2. Numerical procedure 

by 1, velocities by U, and pressure by p q .  The Reynolds number is defined as 
All variables in (1)  and (2) have been non-dimensionalized: time by 1/17,’ lengths 

(4) 
V 

The equations are reformulated with u, $ variables. The stream function $ is defmed 
through 

The y-coordinate is rescaled with the outer edge H ( x ,  t )  of the computational region, 

Substitution of (5) and (6) into ( 1 )  and (2)’ and rewriting of the system as three 
first-order differential equations, by introduction of a scaled vorticity w ,  gives 

x = xb:  u, 9, w profiles of the oncoming bounding layer specified. 

The computational region is covered by a grid (in space and time) with grid points 
( x t , q , , t k ) ,  (i = 1,2 ,  ..., 1 ; j  = 1 , 2 , .  .., J ;  k = 1,2 ,  ..., K ) .  The equations (7a and c) are 
discretized around the point (xi, ~ ~ - 4 ,  t R ) ,  whereas ( 7 b )  is discretized around 
(x#, ~ ~ - t ,  tk-:) (Crank-Nicolson method). All derivatives on a station i are approxi- 
mated with second-order accuracy using neighbouring grid points. In  particular, 
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the convective term in the x-direction is discretized with grid points on the 
x-stations i, i -1  and i - 2  in regions without backflow, and with grid points on 
the x-stations i ,  i + l  and i + 2  in regions with backflow. This change of direction 
of discretization is required to  prevent instabilities, which occur when the 
dependence rule (the numerical region of influence should enclose the analytical 
region of influence) with respect to the convection is not satisfied. In  some unsteady 
evolutions to a steady solution the direction of discretization has to be frozen after 
a certain number of timesteps in order to avoid a limit cycle. 

The Cauchy integral in the edge velocity is integrated by parts to replace the 
first-order pole in the integrand by a weaker singularity. At each time level the 
numerical integration of the integral is performed under the assumption that 
P(u,  6*)/ax2 is piecewise constant on intervals [xi+ xz+:] and that a(u, &*)/ax = 0 for 
x < xb and x 2 x,. The result can be written as 

1 
7GRi 

u, = ue, o+-Pu,S*. (9) 

The matrix P, considered except for its first row and column and its last row and 
column, turns out to be positive definite. 

During each timestep a system of ( I -  1)  x 3J nonlinear algebraic equations has to 
be solved. A combination of Gauss-Seidel and Newton-Raphson iterative procedures 
is used. Repeated Gauss-Seidel sweeps are made from station x2 to xI, in which the 
edge velocity iterates according to 

with A, = (ue6*), = H ,  u,, J - l C r r ,  J ,  n = iteration level, p - entry of the matrix P. 
The positive definite structure of P is a sufficient condition for the convergence of 

the Gauss-Seidel process. At each x-station a system of 3J nonlinear equations is 
solved with a Newton-Raphson process. The matrices appearing in this process have 
a sparse structure : block tridiagonal with an additional last block column (all 3 x 3 
blocks). 

The Gauss-Seidel iteration for the edge velocity (lo), the so-called quasi- 
simultaneous method, was introduced by Veldman (1979, 1981) for the steady 
interacting boundary-layer equations. The quasi-simultaneous method prescribes a 
combination of u, and S* in the Newton-Raphson process a t  each x-station: 
Prescription of u, alone, the so-called direct method, gives, in the numerical process 
to solve the steady equations, a singular matrix as soon as backflow occurs, related 
to the Goldstein singularity. Prescription of S*, the so-called inverse method, in the 
numerical process to  solve the steady interacting equations, is allowed, but its 
convergence is slower than that of the quasi-simultaneous method. Prescription of 
u, in an unsteady evolution to a steady interacting boundary-layer solution does not 
lead to singular matrices, provided the timestep is small enough : Briley & McDonald 
(1975) marched through the computational region and prescribed the edge velocity 
explicitly at the new time level, updated with the displacement influence of the old 
time level. The present study uses the time-dependent approach together with the 
quasi-simultaneous method, because i t  has better stability properties, allowing larger 
timesteps than the direct method. 

For further details about the numerical method used the reader is referred to 
Henkes (1985). 

!r .- 
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3. Indented plate 

coordinates) by 

The Reynolds number (4) is based on the oncoming velocity urn and the characteristic 
plate length 1 ;  a is taken as -0.03. The Euler solution, assuming an attached 
vanishingly thin boundary layer, is approximated by 

The shape of the indented plate, depicted in figure 1, is given (in boundary-layer 

yw = a B  sech4(x-2.5), x 2 0. (11) 

Calculated streamline patterns (previous results and new ones to  be discussed next) 
are shown in figure 2. 

The problem was originally defined by Carter & Wornom (1975) on the interval 
1 < x < 4. They presented solutions at a Reynolds number R = 8 x lo4. Veldman 
(1979, 1981) solved the problem a t  a Reynolds number R = 3.6 x lo5, but he could 
not obtain converged results for larger Reynolds numbers. Both investigations used 
interacting boundary-layer equations. Another approach was followed by Veldman 
& Dijkstra (1980). They treated the problem in a triple-deck framework, but they 
also encountered difficulties at Reynolds numbers slightly above 3.6 x lo5. Careful 
iteration, using results a t  smaller Reynolds numbers as an initial guess, did not lead 
to success. Thus two different steady descriptions of the flow problem ran into 
difficulties in about the same situation. This gave the impression that something 
fundamental was going on: perhaps a steady solution does not exist a t  these large 
Reynolds numbers. 

Recently, Edwards & Carter (1985) were able to calculate a steady solution at 
R = 6 x lo5, but they used a first-order scheme and they neglected the convective 
term in the x-direction in regions with backflow (FLARE approximation). Therefore 
we decided to give it another try. Using the first-order solution a t  R = 6 x lo5 as an 
initial guess, i t  appeared possible to obtain the steady solution with a second-order 
scheme, without neglect of any terms, a t  this Reynolds number. 

Solutions at larger Reynolds numbers could only be obtained by following an 
unsteady approach, starting from the steady solution at  R = 6 x lo5; the steady 
solution a t  R = 1.5 x lo6 was reached by increasing the Reynolds number as 

R(t)  = R, - (R,  - R,) sech ( t ) ,  (13) 

with R, = 6 x lo5, R, = 1.5 x lo6. 
As a rule three sweeps were made at each time level. The almost steady solution 

on the 61 x 4 1  spatial grid at t = 8.0, after 75 timesteps, was used to initiate a 
calculation with the steady equations for R = 1.5 x lo6: another 58 sweeps were 
required to satisfy the criterion that the maximum norm of changes in u, 6* is below 

The value R = 1.5 x lo6 was chosen such that the 61 x 41 numerical grid could 
resolve some of the details of the free shear layer; the wall shear stress in figure 3 
between x = 2.0 and 2.5 already shows some ‘wiggles’ which are caused by a lack 
of resolution (all curves in this paper are found by just a linear interpolation between 
discrete numerical values). Larger Reynolds numbers would require a finer grid, with 
increased computational cost. The wiggle of x = 1 results from the interaction via 
the Cauchy integral which is suddenly switched on at x = 1. Calculations on coarser 
grids (31 x 21,46 x 31) were made to confirm the accuracy of the curves in figure 3. 

10-4. 
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FIQURE 1.  Kirchhoff free-streamline solution. 
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FIQURE 2. Streamlines of steady interacting boundary-layer solution along an indented plate. 
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FIGURE 3. Detached-flow characteristics of steady interacting boundary-layer solution along 
indented plate. (a) Growth bubble; (b)  wall shear stress; (c) pressure; (a?) core of shear layer. 

These results give the impression that, at this depth of the indentation, the 
interacting boundary-layer equations do have a steady solution at arbitrarily large 
Reynolds numbers. The difficulties encountered in the previous investigations seem 
to be of a numerical nature. This section is closed with some reflections on the physical 
meaning of the solution. 

end up in a 
Goldstein singularity for indentations a < -0.0085. Herwig (1981) suggests that the 
relevant Euler solution for indentations with such a Goldstein singularity is of 
the Kirchhoff free-streamline type, as depicted in figure 1. The steady interacting 
boundary-layer solution, being an attached boundary-layer strategy, supports the 
suggested detached boundary-layer structure, at least for the indentation a = - 0.03. 
Increase of the Reynolds number leads to a smooth transition from a steady attached 
flow to a steady detached flow, i.e. without any clear type of breakdown. The 
detached-flow characteristics in the steady interacting solution for increasing 
Reynolds number are summarized as follows : 

Steady classical boundary-layer solutions with edge velocity ue, 

(i) The recirculation region fills the indentation more and more (figure 3a) .  
(ii) The wall shear stress in the recirculation region tends to zero (figure 3b). 
(iii) The pressure becomes constant in the recirculation region (pressure plateau), 

except close to the end of the recirculation region (figure 3c). 
(iv) Viscous effects are more and more concentrated in a free shear layer. The core 

of the shear layer, where (au/ay) (5, y )  reaches a maximum, approaches 
the shape of the suggested free streamline (figure 3d;  near the end of the 
recirculation region the core of the shear layer is difficult to plot, and it is 
omitted in the figure). 

It is seen that the second contribution to the edge velocity in (2) does not vanish 
for very large Reynolds numbers, but corrects the wrong choice of the relevant Euler 
solution ue, o, which assumed an attached boundary layer in the limit R+ 00. The 
interacting boundary-layer equations are not a true asymptotic description for the 
indentation a = -0.03, because an asymptotic potential layer arises, for very large 
Reynolds numbers, between the free streamline and the wall, according to Herwig’s 
detached flow model with finite-Reynolds-number effects, which is not captured in 
this composite formulation. The transition from the attached-flow description to the 
detached-flow description is smooth, implying that a range of Reynolds numbers 
exists where both descriptions are valid. Care must be taken with the interpretation 
of an attached-flow solution for a very large Reynolds number; the interacting 
boundary-layer equations for the indentation considered do not seem to warn of a 
special breakdown behaviour, although the solution has probably left the range of 
validity. 

We have verified that the unsteady classical boundary-layer solution for the 
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indentation a = -0.03 reveals a finite-time singularity of the Van Dommelen type 
(details are not presented here). The above results show that the interaction 
completely removes this singularity for the indentation considered ; a steady-state 
limit of the unsteady equations can be obtained. I n  analogy with the analysis of the 
triple-deck equations by Stewartson et al., it is expected that a critical combination 
of (a, R)-parameters exists, where a clear breakdown warning of the interacting 
boundary-layer solution is given : non-existence of the steady solution, with a 
finite-time singularity or the growth beyond all bounds for t+cm in the unsteady 
solution. Instead of checking this for an indentation a < -0.03, the unsteady 
interacting flow around the impulsively started cylinder is determined ; its flow 
structure is believed to be comparable with the flow along the plate with indentation 
1.1 = O(1) .  

4. Impulsively started cylinder 
During recent years much interest has been given to the unsteady boundary-layer 

development around the impulsively started cylinder. Van Dommelen (1981) calcu- 
lated very accurately that the unsteady classical boundary-layer solution develops 
a singularity within a finite time, implying the non-existence of a steady classical 
solution. The formation of this singularity has been confirmed by Cowley (1983) and 
Ingham ( 1984). 

The cylinder configuration is depicted in figure 4. The characteristic velocity U, 
and length 1 are taken as two times the oncoming velocity, and the cylinder radius, 
respectively. The boundary condition u = 0 a t  x = 0 and K follows from the 
assumption that the flow is symmetric (for x = K a boundary condition is only 
required for y-values that touch the region with backflow). u , , ~  is taken as sinx, 
resulting from the Euler solution that assumes a symmetric potential flow with a 
vanishingly thin boundary layer along the wall. The first term in Blasius’ (1908) series 
expansion for small times after the impulsive start is used to initiate the calculation 
at t = 0.01. 

The unsteady classical boundary-layer calculation has been repeated. The implicit 
treatment of the x-derivatives in the backflow region requires some sweeps 
through the computational region; the convergence is very fast, and as a rule three 
sweeps are made a t  each time level. Calculated stream- and vorticity lines (81 x 41 
spatial grid, with a timestep 0.01 for 0.01 < t < 0.1 and 0.05 for t > 0.1) are shown in 
figure 5 ( a ) .  The agreement with Van Dommelen (see the displacement thickness 
in figure 5 b )  is good until shortly before the appearance of the singularity a t  
t = 3.0045. Comparison with our results on coarser grids (21 x 11,41 x 21) showed 
that a much finer spatial grid, with a very small timestep, should be introduced 
after t = 2.8 to capture this singular growth. The wiggles in figure 5 ( b )  are due to 
this lack of numerical reso1ution.t 

Unsteady interacting boundary-layer solutions have been generated for R = los, 
lo5 and lo4. One has to realize that only a simple interaction model is used, in which 
the effect of the finite cylinder curvature, for example, is neglected. x, is chosen 
somewhat larger than K ; the values of u, S* for x > K follow from the fact that  ue S* 
is an odd function around x = K when symmetry is assumed. Calculated stream- 
and vorticity lines for R = lo6 (41 x 21 spatial grid, with a timestep 0.01 for 

t The results disagree with recent calculations of Cebeci (1986), suggesting that the singularity 
does not appear within a finite time. Deviations are already large at t = 2.5. 



Interacting boundary-layev breakdown 523 

FIGURE 4. Impulsively started cylinder. 

0.01 < t < 0.1 and a timestep 0.1 for t > 0.1; and an 81 x 41 spatial grid, with a 
timestep 0.01 for 0.01 < t < 0.1, a timestep 0.1 for 0.1 < t < 2.5 and a timestep 0.05 
for t > 2.5) are depicted in figure 6 ( a )  and the displacement thickness is shown in 
figure 6 ( b ) .  It is seen that the recirculation region splits up into a lot of eddies at  
t = 2.9, all turning in the same direction. Stream- and vorticity lines and the 
displacement thickness for R = lo5 are depicted in figures 7(a, and b )  (again for a 
41 x 21 and 81 x 41 grid). At  t = 2.7 two peaks are formed in the displacement 
thickness, corresponding to the individualization of a vortex within the recirculation 
region. The grid size and timestep used are too coarse to decide whether the growth 
of the displacement thickness for R = lo5 is singular at  a finite time, or only leads 
to an unbounded solution for t --f 00. 

The oscillations in figures 6 ( b )  and 7 (b)  are not ordinary numerical point-to-point 
wiggles. For instance, on the 81 x 41 grid, 6 intervals lie between the maximum and 
minimum in the displacement thickness in figure 7 ( b ) .  Deviations between the 
solutions on the fine and coarser grids are small ; smaller for R = lo5 than for R = lo6. 
The global pattern is believed to be physical. Moreover, the breakdown of the 
unsteady interacting boundary-layer solution seems to be similar to the breakdown 
of Smith’s unsteady triple-deck solution for an ellipse with leading-edge bubble, as 
mentioned in the Introduction, showing both the same splitting up into eddies and 
the oscillations in the displacement thickness. Also there is a similarity with a recent 
study of Tutty & Cowley (1986), who show that a linear Rayleigh instability can 
develop in an unsteady triple-deck solution, leading to the formation of a series of 
eddies. It would be worthwhile to check whether the present unsteady solution of 
the interacting boundary-layer equations (for example at t = 2.5) is Rayleigh- 
unstable, initiating the breakdown. The similarity of the present results with the 
study of Smith on the one hand and Tutty & Cowley on the other hand poses the 
interesting question of a common physical mechanism. 

Navier-Stokes solutions for R = lo5 and lo6 are unknown to the present authors. 
Comparison in figure 8 of the interacting boundary-layer solution at R = lo4 with 
the Navier-Stokes solution of Dennis & Staniforth (1971) (a more extended calcula- 
tion was recently given by Ta Phuoc LOC & Bouard 1985) shows a good agreement 
of the wall shear stress a t  t = 0.6 and 2.0, but there is only qualitative agreement 
at  t = 3.0 .  One has to realize that the boundary layer is probably too thick for the 
interaction model to be accurate. Nevertheless, the interacting solution gives a better 
approximation of the Navier-Stokes solution than the classical solution. Experi- 
mental studies are only known up to R = lo4 as well. Qualitative agreement is found 
between the interacting solution for R = lo5 and the experiments of Bouard & 
Coutanceau (1980) for R = lo4 ; in particular the individualization of a vortex, absent 
in the classical solution, is indeed captured in the interacting solution. 

It is concluded that the interacting boundary-layer approach for the impulsively 
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FIGURE 5. Classical boundary-layer solution for cylinder. (a)  Stream- and vorticity lines (an 
extremely thick boundary layer is shown); ( b )  displacement thickness: -, present; ----, 
Van Dommelen (1981). 
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FIGURE 6. Interacting boundary layer of cylinder for R = lo6. (a) Stream- and vorticity lines 
(radial coordinate of flow field is stretched with respect to cylinder radius); (b) displacement 
thickness: -, 81 x41,At = 0.05; ----, 41 x21,At = 0.1. 
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FIGURE 7 ( a ) .  For caption see facing page. 

started cylinder does at least delay the appearance of the fmite-time singularity. 
However, the unsteady interacting solution is unbounded and a steady interacting 
solution does not exist. Van Dommelen’s suggestion that the singularity in the 
unsteady classical solution corresponds to the individualization of a vortex in the 
experiments of Bouard & Coutanceau is strengthened by the interacting results for 
R = lo5. The results also support the idea (Van Dommelen 1981 ; Smith 1982) that 
the singularity in the unsteady classical solution is the mathematical representation 
of an infinitely fast-growing vortex in the y-direction in the limit R-t co, indicating 
an abrupt transition from an unsteady attached to an unsteady detached flow. The 
interacting solution for a finite Reynolds number calculates the initial phase of the 
vortex growth (perhaps ending in a singularity), achieving a violently unsteady 
transition to the unsteady detached-flow structure (dynamic stall). When the vortex 
becomes too large, the attached interacting boundary-layer approach loses its 
validity; new asymptotic structures have to be developed to describe the unsteady 
detached continuation of the flow. 
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FIQURE 7. Interacting boundary layer of cylinder for R = lo6. (a) Stream- and vorticity lines 
(radial coordinate of flow field is stretched with respect to  cylinder radius); ( b )  displacement 
thickness: -, 81 x41,At = 0.05; ----, 41 x21,At = 0.1. 
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FIGURE 8. Boundary-layer solution of cylinder for R = lo4 compared with Naviel-Stokes solution : 
-, NavierStokes solution (Dennis & Staniforth 1971) ; ----, interacting boundary-layer 
solution ; ---, classical boundary-layer solution. 



528 R. A .  W. M .  Henkes and A .  E .  P .  Veldman 

5. Conclusion 
For very small plate indentations (-0.0085 < a < 0) the steady classical 

boundary-layer solution does not break down with a Goldstein singularity; the 
boundary layer remains attached, even in the limit R+ co. Interaction for the 
indentation a = - 0.03 removes the Goldstein singularity. An unsteady evolution 
prevents the numerical instabilities that were found in earlier calculations of steady 
solutions a t  very large Reynolds numbers. Increase of the Reynolds number leads 
to a smooth transition from a steady attached flow (viscous effects are only felt in 
an O(R-t) layer close to  the wall) t o  a steady detached flow (viscous effects are also 
felt in layers further removed from the wall), although the interacting boundary-layer 
solution for very large Reynolds numbers is not expected to capture the potential 
core of the detached flow ; there may be a breakdown without any warning. 

Interaction does delay Van Dommelen’s finite-time singularity in the unsteady 
classical solution for the impulsively started cylinder, and further analysis is required 
to decide whether its appearance is totally prevented. The unsteady solution is 
unbounded, and hence a steady interacting solution does not exist. The individual- 
ization of a rapidly growing vortex in the interacting solution for R = lo5, also found 
in experiments for R = lo4, supports the idea that the breakdown of the classical and 
interacting cylinder solution refers to a sudden transition from an unsteady attached 
to an unsteady detached flow. 

The two examples of boundary-layer flow discussed in this paper both feature 
Goldstein’s singularity (in case of steady flow) and Van Dommelen’s singularity (in 
case of unsteady flow) when the classical boundary-layer equations are solved. The 
addition of interaction leads to  a different response in the two examples, which is 
related t o  the (non)existence of a steady solution. This different response of the 
interacting boundary-layer equations is in agreement with the asymptotic theory of 
Stewartson et al. and Smith, in which a critical combination of parameters appears, 
beyond which a steady solution ceases to exist. 

The paper describes research performed in partial fulfilment of the engineering 
degree of one of the authors (R.A.W.M.H.) at the Department of Aerospace 
Engineering in Delft, under the responsibility of Professor J. L. van Ingen. The 
authors would like to  thank him for his interest in this investigation. 
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